Literature Connections for BI Projects with Educators (K-12 and Informal)

References for rationale or as background to prepare to work with these audiences.

  1. National Academy of Engineering (2018). Understanding the Educational and Career Pathways of Engineers. Washington, DC: The National Academies Press. https://doi.org/10.17226/25284

    Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce.

  2. National Academies of Sciences, Engineering, and Medicine (2016). Barriers and Opportunities for 2-Year and 4-Year STEM Degrees: Systemic Change to Support Students' Diverse Pathways. Washington, DC: The National Academies Press. https://doi.org/10.17226/21739

    Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study.

  3. National Academy of Engineering and National Research Council (2005). Enhancing the Community College Pathway to Engineering Careers. Washington, DC: The National Academies Press. https://doi.org/10.17226/11438

    Community colleges play an important role in starting students on the road to engineering careers, but students often face obstacles in transferring to four-year educational institutions to continue their education. Enhancing the Community College Pathway to Engineering Careers, a new book from the National Academy of Engineering and the National Research Council, discusses ways to improve the transfer experience for students at community colleges and offers strategies to enhance partnerships between those colleges and four-year engineering schools to help students transfer more smoothly. In particular, the book focuses on challenges and opportunities for improving transfer between community colleges and four-year educational institutions, recruitment and retention of students interested in engineering, the curricular content and quality of engineering programs, opportunities for community colleges to increase diversity in the engineering workforce, and a review of sources of information on community college and transfer students. It includes a number of current policies, practices, and programs involving community college—four-year institution partnerships.

  4. National Academies of Sciences, Engineering, and Medicine (2016). Promising Practices for Strengthening the Regional STEM Workforce Development Ecosystem. Washington, DC: The National Academies Press. https://doi.org/10.17226/21894

    U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation's economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves out of the university and into broader society in several ways — through highly skilled graduates (i.e. human capital); academic publications; and the creation of new products, industries, and companies via the commercialization of scientific breakthroughs. Despite this, our understanding of how universities receive, interpret, and respond to industry signaling demands for STEM-trained workers is far from complete.

  5. National Academies of Sciences, Engineering, and Medicine (2015). Science Teachers' Learning: Enhancing Opportunities, Creating Supportive Contexts. Washington, DC: The National Academies Press. https://doi.org/10.17226/21836

    Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach.

  6. National Research Council (2010). Preparing Teachers: Building Evidence for Sound Policy. Washington, DC: The National Academies Press. https://doi.org/10.17226/12882

    Teachers make a difference. The success of any plan for improving educational outcomes depends on the teachers who carry it out and thus on the abilities of those attracted to the field and their preparation. Yet there are many questions about how teachers are being prepared and how they ought to be prepared. Yet, teacher preparation is often treated as an afterthought in discussions of improving the public education system.

  7. National Academies of Sciences, Engineering, and Medicine (2019). Science and Engineering for Grades 6-12: Investigation and Design at the Center. Washington, DC: The National Academies Press. https://doi.org/10.17226/25216

    It is essential for today's students to learn about science and engineering in order to make sense of the world around them and participate as informed members of a democratic society. The skills and ways of thinking that are developed and honed through engaging in scientific and engineering endeavors can be used to engage with evidence in making personal decisions, to participate responsibly in civic life, and to improve and maintain the health of the environment, as well as to prepare for careers that use science and technology.

  8. Holmlund, T., Lesseig, K., & Slavit, D. (2018). Making sense of "STEM education" in K-12 contexts. International Journal of STEM Education, 5(1), 1-18. https://doi.org/10.1186/s40594-018-0127-2

    Despite increasing attention to STEM education worldwide, there is considerable uncertainty as to what constitutes STEM education and what it means in terms of curriculum and student outcomes. The purpose of this study was to investigate the commonalities and variations in educators' conceptualizations of STEM education. Sensemaking theory framed our analysis of ideas that were being selected and retained in relation to professional learning experiences in three contexts: two traditional middle schools, a STEM-focused school, and state-wide STEM professional development. Concept maps and interview transcripts from 34 educators holding different roles were analyzed: STEM and non-STEM teachers, administrators, and STEM professional development providers.

  Return to Audiences